Abstract

A comprehensive approach is proposed to systematically determine the optimal mode of operation between continuous and batch injectable manufacturing considering product and market conditions. At the core of this approach are two integrated complete mathematical modules for discrete and continuous injectable manufacturing, which are supplemented with an economic evaluation module that can then be used to explore the impact of all relevant process parameters (e.g., lot-size, number of operators, solubility, product demand, raw material costs). When the developed approach was applied to two case studies, it was found that batch production was preferred at low to moderate solution (raw material) costs. In contrast, at higher solution costs, the preference for batch and continuous production processes changed back and forth as the annual product demand changed. The study also found that continuous production processes became increasingly preferred at medium to large final dosage volumes and a competitive alternative even at moderate solution costs. From a decision-making point of view, batch injectable manufacturing will be preferred over the novel continuous manufacturing technology unless there is a significant economic incentive to overcome the perceived technology risk. The proposed approach is intended as a decision-support tool for pharmaceutical process engineers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.