Abstract

Cynomorium songaricum is a medicinal, edible, and endangered plant species. Since inflorescences are not considered medicinal parts, their discard causes a waste of resources. To expand the medicinal uses of C. songaricum, we evaluated their chemistry and pharmacology by applying widely targeted metabolomics, network pharmacology, and molecular docking. Widely targeted metabolomics results indicated chemical diversity in C. songaricum with 599 compounds. Among them, 280 compounds were different between the succulent stem and inflorescence. With 218 upregulated compounds, inflorescence has more abundant compounds than the succulent stem, especially pigment compounds such as flavonols, flavones, and flavanones. Moreover, anthocyanin and proanthocyanidin were unique compounds in the inflorescence and succulent stem, respectively. Sixty-five compounds in inflorescence and 18 compounds in succulent stems were found to be associated with atherosclerosis in the network pharmacology analysis. Tests revealed that inflorescence had a stronger anti-atherosclerotic effect than succulent stems. Molecular docking analysis revealed that 30 compounds (29 pigment compounds) in inflorescence and 6 compounds (4 pigment compounds) in succulent stem showed strong binding affinities with three target proteins, namely ALB, MPO, and NOS2, especially amentoflavone, quercetin 7-O-rutinoside, and luteolin 7-O-glucoside (cynaroside). Results demonstrated that the inflorescence is rich in pigment compounds and has a potential anti-atherosclerosis effect. This study provides novel methods and ideas for the sustainable development of endangered medicinal plants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call