Abstract

AbstractThe structural and luminescence properties of (001) p-type porous silicon samples (p∼0.1-0.2 Ω•cm) fabricated electrochemically under various conditions were investigated using high resolution double and triple axis diffraction and photoluminescence spectroscopy. We show the sensitivity of the structure of the porous silicon to the current density in the range of 10-50 mA/cm2, HF acid concentration in the range of 15% - 30%, and the evolution of the structure with time. We have found a systematic dependence of the amount of strain in the porous silicon layer (PSL) on the current density. The effect of the HF concentration is such that at 25% and 30% HF, PSLs are formed which are crystalline and strained, but at a lower HF concentration (15%), strained layers are not formed. The perpendicular strain in the layer increases linearly with storage time but the in-plane lattice constant of the porous silicon remains matched to the substrate. Further, we utilized x-ray reciprocal space maps to observe that, with storage time, there is an increase in the diffuse scattering from the PSL due to an increase in the range of tilts in the layer. Room temperature photoluminescence emission was observed for all 15% and 25% HF samples, but not for all 30% HF samples. Higher peak luminescence energy was obtained with lower HF concentration. Finally, we note the relationship between the strain in the PSL and the luminescence properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call