Abstract

The brain is regarded as one of the most effective body-controlling organs. The development of technology has enabled the early and accurate detection of brain tumors, which makes a significant difference in their treatment. The adoption of AI has grown substantially in the arena of neurology. This systematic review compares recent Deep Learning (DL), Machine Learning (ML), and hybrid methods for detecting brain cancers. This article evaluates 36 recent articles on these techniques, considering datasets, methodology, tools used, merits, and limitations. The articles contain comprehensible graphs and tables. The detection of brain tumors relies heavily on ML techniques such as Support Vector Machines (SVM) and Fuzzy C-Means (FCM). Recurrent Convolutional Neural Networks (RCNN), DenseNet, Convolutional Neural Networks (CNN), ResNet, and Deep Neural Networks (DNN) are DL techniques used to detect brain tumors more efficiently. DL and ML techniques are merged to develop hybrid techniques. In addition, a summary of the various image processing steps is provided. The systematic review identifies outstanding issues and future goals for DL and ML-based techniques for detecting brain tumors. Through a systematic review, the most effective method for detecting brain tumors can be identified and utilized for improvement.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.