Abstract

BackgroundPreviously, a database characterizing examples of Embryophyte gene family lineages showing evidence of positive selection was reported. Of the gene family trees, 138 Embryophyte branches showed Ka/Ks>>1 and are candidates for functional adaptation. The database and these examples have now been studied in further detail to better understand the molecular basis for plant genome evolution.ResultsNeutral modeling showed an excess of positive and/or negative selection in the database over a neutral expectation centered on the mean Ka/Ks ratio. Out of 673 families with assigned structures, 490 have at least one branch with Ka/Ks >>1 in a region of the protein, enabling a picture of selective pressures delineated by protein structure. Most gene families allowed reconstruction back to the last common ancestor of flowering plants (Magnoliophytes) without saturation of 4- fold degenerate codon position. Positive selection occurred in a wide variety of gene families with different functions, including in the self incompatibility locus, in defense against pathogens, in embryogenesis, in cold acclimation, and in electrontransport. Structurally, selective pressures were similar between alpha-helices and beta- sheets, but were less negative and more variant on the surface and away from the hydrophobic core.ConclusionPositive selection was detected statistically significantly in a small and nonrandom minority of gene families in a systematic analysis of embryophyte gene families. More sensitive methods increased the level of positive selection that was detected and presented a structural basis for the role of positive selection in plant genomes.

Highlights

  • A database characterizing examples of Embryophyte gene family lineages showing evidence of positive selection was reported

  • The search for lineage- specific genes and phenotypically important lineage- specific evolution has intensified with the increasing number of genome sequences, driven through population genetic analysis of SNPs and through inter- specific molecular evolutionary analysis [1]

  • From 138,662 Embryophyte genes from GenBank release 136, 4,216 gene families were built in The Adaptive Evolution Database (TAED)

Read more

Summary

Introduction

A database characterizing examples of Embryophyte gene family lineages showing evidence of positive selection was reported. Of the gene family trees, 138 Embryophyte branches showed Ka/Ks>>1 and are candidates for functional adaptation The database and these examples have been studied in further detail to better understand the molecular basis for plant genome evolution. Differing views have emerged as to the role of gene duplication in driving evolutionary novelty, including concerted evolution in tandemly repetitive families, mediating genetic robustness, subfunctionalization, and neofunctionalization de novo or involving pre-adaptation [3,4,5,6,7]. In both paralogs (emerging from lineage- specific gene duplication events). Environments can change, changing the structure and optima in the fitness landscapes with time (giving temporal variation to the flatness/ruggedness of the fitness landscape)

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.