Abstract
This review explores the state-of-the-art with respect to multicomponent nanomaterials (MCNMs) and high aspect ratio nanomaterials (HARNs), with a focus on their physicochemical characterisation, applications, and hazard, fate, and risk assessment. Utilising the PRISMA approach, this study investigates specific MCNMs including cerium-zirconium mixtures (CexZryO2) and ZnO nanomaterials doped with transition metals and rare earth elements, as well as Titanium Carbide (TiC) nanomaterials contained in Ti-6Al-4V alloy powders. HARNs of interest include graphene, carbon-derived nanotubes (CNTs), and metallic nanowires, specifically Ag-based nanowires. The review reveals a significant shift in research and innovation (R&I) efforts towards these advanced nanomaterials due to their unique properties and functionalities that promise enhanced performance across various applications including photocatalysis, antibacterial and biomedical uses, and advanced manufacturing. Despite the commercial potential of MCNMs and HARNs, the review identifies critical gaps in our understanding of their environmental fate and transformations upon exposure to new environments, and their potential adverse effects on organisms and the environment. The findings underscore the necessity for further research focused on the environmental transformations and toxicological profiles of these nanomaterials to inform Safe and Sustainable by Design (SSbD) strategies. This review contributes to the body of knowledge by cataloguing current research, identifying research gaps, and highlighting future directions for the development of MCNMs and HARNs, facilitating their safe and effective integration into industry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Computational and Structural Biotechnology Journal
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.