Abstract
Deep learning is gaining importance due to its wide range of applications. Many researchers have utilized deep learning (DL) models for the automated diagnosis of cancer patients. This paper provides a systematic review of DL models for automated diagnosis of cancer patients. Initially, various DL models for cancer diagnosis are presented. Five major categories of cancers such as breast, lung, liver, brain and cervical cancer are considered. As these categories of cancers have a very high percentage of occurrences with high mortality rate. The comparative analysis of different types of DL models is drawn for the diagnosis of cancer at early stages by considering the latest research articles from 2016 to 2022. After comprehensive comparative analysis, it is found that most of the researchers achieved appreciable accuracy with implementation of the convolutional neural network model. These utilized the pretrained models for automated diagnosis of cancer patients. Various shortcomings with the existing DL-based automated cancer diagnosis models are also been presented. Finally, future directions are discussed to facilitate further research for automated diagnosis of cancer patients.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.