Abstract

BackgroundSoftware fault prediction is the process of developing models that can be used by the software practitioners in the early phases of software development life cycle for detecting faulty constructs such as modules or classes. There are various machine learning techniques used in the past for predicting faults. MethodIn this study we perform a systematic review of studies from January 1991 to October 2013 in the literature that use the machine learning techniques for software fault prediction. We assess the performance capability of the machine learning techniques in existing research for software fault prediction. We also compare the performance of the machine learning techniques with the statistical techniques and other machine learning techniques. Further the strengths and weaknesses of machine learning techniques are summarized. ResultsIn this paper we have identified 64 primary studies and seven categories of the machine learning techniques. The results prove the prediction capability of the machine learning techniques for classifying module/class as fault prone or not fault prone. The models using the machine learning techniques for estimating software fault proneness outperform the traditional statistical models. ConclusionBased on the results obtained from the systematic review, we conclude that the machine learning techniques have the ability for predicting software fault proneness and can be used by software practitioners and researchers. However, the application of the machine learning techniques in software fault prediction is still limited and more number of studies should be carried out in order to obtain well formed and generalizable results. We provide future guidelines to practitioners and researchers based on the results obtained in this work.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call