Abstract
The purpose of this research is to present a thorough evaluation of energy management systems that consist of hybrid energy storage systems and their control algorithms, which may be used in electric vehicles. This paper outlines the characteristics of electric vehicles, research methods, an analysis of the hybrid energy storage system architecture, the converter topology, and energy management techniques. The strength and co-occurrence of keywords over the past ten years are shown in this study using a systematic research framework for performing a literature review and using keyword analysis techniques. This study reveals a pattern of recently and frequently used terms in works of literature. Consequently, their suitability, benefits, and drawbacks are assessed. In this study, the hybrid energy storage system and converter circuit architecture are evaluated and rated. A non-isolated DC-DC converter connected to an SC is a suitable configuration for the hybrid converter because it is simple to build, is reliable, and has minimal loss/weight/cost, which all improve vehicle performance. In terms of the application of control strategies, it is shown that deterministic and fuzzy-rule-based control techniques are successfully assessed using real-scale vehicle experiments and can be selected for manufacturing. On the other hand, real-time optimization-based energy management techniques have been effectively shown in lab-scale tests and may be used in a future real-scale vehicle.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.