Abstract
This study presents a systematic review of deep learning for intelligent transportation systems. Statistics are used to find the most cited articles, and the number of articles and quotes are used to find the most productive and influential authors, institutions, and countries or regions. Key topics and patterns of change are discovered using the authors’ keywords, and the most common issues and themes are revealed using flow maps and showing the corresponding trends. A co-occurrence keyword network is also developed to present the research landscape and hotspots in the field. The results explain how publications have changed over the past seven years. Researchers can use this study to have a deeper understanding of the current state and future trends in the role of deep learning in intelligent transportation systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.