Abstract

Ebola virus disease (EVD) is a deadly global public health threat, with no currently approved treatments. Traditional drug discovery and development is too expensive and inefficient to react quickly to the threat. We review published research studies that utilize computational approaches to find or develop drugs that target the Ebola virus and synthesize its results. A variety of hypothesized and/or novel treatments are reported to have potential anti-Ebola activity. Approaches that utilize multi-targeting/polypharmacology have the most promise in treating EVD.

Highlights

  • Ebola virus disease (EVD) is a persistent epidemic and pandemic threat with no satisfactory treatment regimen

  • The use of computational methods to tackle the threat of global pandemics due to the spread of the Ebola virus is relatively new

  • We considered published studies which utilized a computational approach to drug discovery, drug development, and drug repurposing to target the Ebola virus

Read more

Summary

Introduction

Ebola virus disease (EVD) is a persistent epidemic and pandemic threat with no satisfactory treatment regimen. The 2014 West Africa Ebola outbreak resulted in more than 28,000 cases leading to over 11,000 deaths, including several cases in seven countries beyond the region of West Africa [1]. This was the largest and deadliest Ebola outbreak in history and it highlighted the catastrophic potential of this emerging public health threat. Since this larger epidemic, more people have died from smaller outbreaks, most recently from May to July 2017 in the Democratic Republic of the Congo [2,3]. Novel drug discovery and development can take ten to fifteen years [6] and cost

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.