Abstract

ObjectiveTo investigate the association between air pollutants and the incidence of tuberculosis (TB) through a systematic review and meta-analysis, and to provide directions for future research and prevention of TB. MethodsA search was conducted for all literature related to the incidence of TB and air pollution in the database. We screened the retrieved articles and proceeded statistical analyses using random effects models to investigate the relationships between five air pollutants (PM2.5, PM10, SO2, NO2 and O3) and the incidence of TB. ResultsThe initial search identified 100 pieces of literature and 9 studies met the screening criteria after the screening. The single-day lagged risk ratio (RR) and 95% Confidence Intervals (CIs) for the combined effects estimates are as follows: PM2.5: 1.059 (0.966, 1.160); PM10: 1.000 (0.996, 1.004); SO2: 0.980 (0.954, 1.007); NO2: 1.011 (0.994, 1.027); O3: 0.994 (0.980,1.008). The cumulative lagged results for these five pollutants are listed like this: PM2.5: 1.095 (0.983, 1.219); PM10: 1.035 (1.006, 1.066); SO2: 0.964 (0.830, 1.121); NO2: 1.037 (1.010, 1.065); O3: 0.982 (0.954, 1.010). ConclusionThe single-day lag effects of PM2.5, PM10, SO2, NO2, and O3 are not statistically significantly relevant for the occurrence of TB. However, the cumulative lag results show that both PM10 and NO2 contribute to the prevalence of TB, while the statistical relationship between the cumulative lag effects of PM2.5, SO2, and O3 and the onset of TB remains unknown.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call