Abstract
There are concerns that anthropogenic harvesting may cause phenotypic adaptive changes in exploited wild populations, in particular maturation at a smaller size and younger age. In this paper, we study the evolutionarily stable size at maturation of prey subjected to size-selective harvesting in a simple predator-prey model, taking into account three recognized life-history costs of early maturation, namely reduced fecundity, reduced growth, and increased mortality. Our analysis shows that harvesting large individuals favors maturation at smaller size compared to the unharvested system, independent of life-history tradeoff and the predator's prey-size preference. In general, however, the evolutionarily stable maturation size can either increase or decrease relative to the unharvested system, depending on the harvesting regime, the life-history tradeoff, and the predator's preferred size of prey. Furthermore, we examine how the predator population size changes in response to adaptive change in size at maturation of the prey. Surprisingly, in some situations, we find that the evolutionarily stable maturation size under harvesting is associated with an increased predator population size. This occurs, in particular, when early maturation trades off with growth rate. In total, we determine the evolutionarily stable size at maturation and associated predator population size for a total of forty-five different combinations of tradeoff, harvest regime, and predated size class.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.