Abstract
In this article, a systematic method to derive dynamic equations of motion for flexible robot manipulators is developed by using the Lagrangian assumed modes method. The proposed method can be applied to dynamic simulation and control system design for flexible robot manipulators. In the proposed method, the link deflection is described by a truncated modal expansion. The operations of only 3x3 matrices and/or 3 × 1 vectors exist in the method. All the dynamics computations are performed in the link coordinate systems, where the kinematics informations are computed with the forward recursion from the base to the hand tip and the dynamics informations are computed with the return recursion. As generally compared with other existing methods, the method proposed in this article is, computationally, more simple, systematic, and efficient. A computational simulation for a single-link flexible robot manipulator is presented to verify the proposed method. © 1992 John Wiley & Sons, Inc.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.