Abstract
Artificial Intelligence (AI) is the domain of computer science that focuses on the development of machines that operate like humans. In the field of AI, medical disease detection is an instantly growing domain of research. In the past years, numerous endeavours have been made for the improvements of medical disease detection, because the errors and problems in medical disease detection cause serious wrong medical treatment. Meta-heuristic techniques have been frequently utilized for the detection of medical diseases and promise better accuracy of perception and prediction of diseases in the domain of biomedical. Particle Swarm Optimization (PSO) is a swarm-based intelligent stochastic search technique encouraged from the intrinsic manner of bee swarm during the searching of their food source. Consequently, for the versatility of numerical experimentation, PSO has been mostly applied to address the diverse kinds of optimization problems. However, the PSO techniques are frequently adopted for the detection of diseases but there is still a gap in the comparative survey. This paper presents an insight into the diagnosis of medical diseases in health care using various PSO approaches. This study presents to deliver a systematic literature review of current PSO approaches for knowledge discovery in the field of disease detection. The systematic analysis discloses the potential research areas of PSO strategies as well as the research gaps, although, the main goal is to provide the directions for future enhancement and development in this area. This paper gives a systematic survey of this conceptual model for the advanced research, which has been explored in the specified literature to date. This review comprehends the fundamental concepts, theoretical foundations, and conventional application fields. It is predicted that our study will be beneficial for the researchers to review the PSO algorithms in-depth for disease detection. Several challenges that can be undertaken to move the field forward are discussed according to the current state of the PSO strategies in health care.
Highlights
The application of computational intelligence for diagnosis of medical diseases has become a new trend in recent years
This study is shown a systematic review of existing studies on the standard Particle Swarm Optimization (PSO) and its variants to diagnose the medical diseases for health care
The paper is giving detail on different medical diseases that have been utilized in numerous PSO approaches for solving medical disease detection in health care
Summary
The application of computational intelligence for diagnosis of medical diseases has become a new trend in recent years. Numerous methods of medical disease diagnosis can be grouped as intelligent data classification tasks. Our contribution in this study is to provide a comprehensive Systematic Literature Review (SLR) on the PSO and its variants for the detection of medical diseases. Our work presents a detailed discussion on the past literature, as well as, describes the future directions for the scientist of this field.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Computational and Mathematical Methods in Medicine
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.