Abstract

Federated learning is an emerging machine learning paradigm where clients train models locally and formulate a global model based on the local model updates. To identify the state-of-the-art in federated learning and explore how to develop federated learning systems, we perform a systematic literature review from a software engineering perspective, based on 231 primary studies. Our data synthesis covers the lifecycle of federated learning system development that includes background understanding, requirement analysis, architecture design, implementation, and evaluation. We highlight and summarise the findings from the results and identify future trends to encourage researchers to advance their current work.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.