Abstract

Budlein A is a sesquiterpene lactone (STL) with some reported biological activities. Pre-clinical studies to identify in vivo metabolites often employ hyphenated techniques such as liquid chromatography/tandem mass spectrometry (LC/MS/MS). It is also possible to use the fragmentation pattern obtained by Collision-Induced Dissociation (CID) and Higher Energy Collision-Induced Dissociation (HCD) to distinguish between the stereoisomers budlein A and centratherin. The experiments were carried out in the positive mode using four different spectrometers with an electrospray ionization (ESI) source: (a) Waters ACQUITY(®) TQD triple quadrupole mass spectrometer (QqQ), (b) AB Sciex API 4000 QTrap(®) (QqQ), (c) Bruker Daltonics micrOTOF™-Q II (time-of-flight, QTOF), and (d) Thermo Scientific LTQ Orbitrap XL hybrid FTMS (Fourier transform mass spectrometer). Computational chemistry studies helped to identify the protonation sites. The B3LYP/6-31G(d) model furnished the equilibrium geometries and energies. The stereochemistry (α- or β-orientation) of the centratherin and budlein A side-chain esters influences the fragmentation pattern recorded on QqQ, QTOF, and Orbitrap-HCD. On QqQ, centratherin releases the side chain, to generate the m/z 275 fragment ion, whereas budlein A gives the m/z 83 fragment ion. On QTOF and Orbitrap-HCD, only budlein A affords the m/z 293 and 83 fragment ions, respectively. The data suggest that proton migration governs the fragmentation pathways under α- or β-orientation. The difference in the QqQ, QTOF, and Orbitrap-HCD spectral profiles of each isomer can help to distinguish between centratherin and budlein A using MS/MS, which becomes an alternative to nuclear magnetic resonance (NMR) analysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call