Abstract

Polymers have been used as viscosifying agents in enhanced oil recovery applications for decades, but their influence on rock surface wettability is rarely discussed relative to its importance: wettability largely controls fluid flow in porous media and changes in wettability may significantly influence subsequent system performance. This paper presents a two-part systematic investigation of wettability alteration during polymer injection into oil-wet limestone. The first part of the paper determines wettability and wetting stability on the core scale. The well-established Amott-Harvey method is used, and five full cycles performed with repeated spontaneous imbibition and forced displacements. Wettability alterations are measured in a polymer/oil system, to determine polymer influence on wettability, and evaluated towards simpler brine/oil and glycerol/oil systems, to determine reproducibility and uncertainty related to the method and fluid/rock system. Polymer injection into oil-wet limestone core plugs is shown to repeatedly and reproducibly reverse the core wettability towards water-wet. Wettability changed both quicker and towards stronger water-wet conditions with polymer solution as the aqueous phase compared to brine and glycerol. The second part of the paper attempts to explain the observed behavior; by utilizing in situ imaging by Positron Emission Tomography, an emerging imaging technology within the geosciences. High resolution imaging provides insight into fluid flow dynamics during water and polymer injections, identifying uneven displacement fronts and significant polymer adsorption.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call