Abstract
The population of the French Departments of the Americas (FDA) is highly influenced by the intense migratory flows with mainland France and surrounding countries of the Caribbean and Latin America, some of which have high incidence rates of tuberculosis (Haiti: 230/100,000; Guyana: 111/100,000; and Suriname: 145/100,000) and drug resistance. Since the development of drug resistance to conventional antituberculous drugs has a major impact on the treatment success of tuberculosis, we therefore decided to review carefully Mycobacterium tuberculosis drug resistance and associated genotypic lineages in the FDA over a seventeen-year period (January 1995–December 2011). A total of 1239 cases were studied, including 153 drug-resistant and 26 multidrug-resistant- (MDR-) TB cases, representing 12.3% and 2.1% of the TB cases in our study setting. A significantly higher proportion of M. tuberculosis isolates among relapse cases showed drug resistance to isoniazid (22.5%, P = 0.002), rifampicin (20.0%, P < 0.001), or both (MDR-TB, 17.5%; P < 0.001). Determination of spoligotyping based phylogenetic clades showed that among the five major lineages observed—T family (30.1%); Latin-American and Mediterranean (LAM, 23.7%); Haarlem (H, 22.2%); East-African Indian (EAI, 7.2%); and X family (6.5%)—two lineages, X and LAM, were overrepresented in drug-resistant and MDR-TB cases, respectively. Finally, 19 predominant spoligotypes were identified for the 1239 isolates of M. tuberculosis in our study among which 4 were significantly associated with drug resistance corresponding to SIT20/LAM1, SIT64/LAM6, SIT45/H1, and SIT46/undefined lineage.
Highlights
Tubercle bacilli having developed resistances to conventional treatments have a major impact on the way patients are treated
While first-line antibiotics are sufficient to ensure a successful treatment of most patients infected with drug susceptible Mycobacterium tuberculosis strains, infections caused by so-called multiresistant (MDR) strains, defined as strains resistant to rifampin and isoniazid, necessitate the use of second-line antibiotics
We developed an expertise in genotyping using spoligotyping [4] and mycobacterial interspersed repetitive units—variable number of tandem DNA repeats (MIRU-VNTRs [5]), coupled to surveillance and tracking of M. tuberculosis complex (MTBC) clones thanks to the establishment of in-house international genotyping databases [6, 7]
Summary
Tubercle bacilli having developed resistances to conventional treatments have a major impact on the way patients are treated. While first-line antibiotics are sufficient to ensure a successful treatment of most patients infected with drug susceptible Mycobacterium tuberculosis strains, infections caused by so-called multiresistant (MDR) strains, defined as strains resistant to rifampin and isoniazid, necessitate the use of second-line antibiotics. These drugs are likely to cause more severe side effects and are more costly than first-line antibiotics [1, 2]. Strategies devised to control the spread of resistant and multiresistant M. tuberculosis strains inevitably include systematic drug susceptibility testing of bacterial isolates and thorough follow-up of patient treatment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.