Abstract
Since urban land use efficiency (ULUE) bridges urbanization and economic efficiency while ecological carrying capacity (ECC) is the basic natural endowments support, the coupling coordination degree (CCD) between ULUE and ECC represents a combination of resource-intensive and environment-friendly, which can serve as an effective tool to evaluate sustainable development. We first quantified ULUE and ECC by super-efficiency DEA, DPSIR framework, and entropy-TOPSIS from a coupling perspective, attempting to compensate for the lack of clarity regarding urban sustainability constraint factors in the holistic perspective. On this basis, we formulate an integrated coupling coordination analysis framework comprising temporal and spatial characteristics, disorder diagnosis and interaction mechanism to synthesize the current scattered research directions into a logically clear framework and serve as a guide for future research on coupling. Moreover, to extend the macroscopic mechanism to a microscopic level at a theoretical level and facilitate more effective and sustainable urban management practices, this paper highlights a detailed multi-stage coupling mechanism corresponding to different stages of urban development, deriving an urban sustainable development spiral upward model. The results indicated that the CCD between ULUE and ECC exhibits a significant clustering pattern accompanied by a spatial spillover effect, which was closely related to economic development level and natural resource endowment. Besides, the disorder factor in the eastern Jilin province was ULUE while the western was ECC. Furthermore, the ULUE will take precedence over ECC breaking the old balance, in which technological innovation is the internal driving factor. These findings also illustrate the analysis framework and coupling mechanism mentioned in this paper can act as a nexus between interdisciplinary perspectives to enhance our understanding of changing social-ecological systems, thus serving urban sustainable development.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.