Abstract

This paper describes a systematic computational design system for two-dimensional turbine cascades. The system includes a sequence of calculations in which airfoil profiles are designed from velocity diagram requirements and specified geometric parameters, followed by an inviscid global streamline curvature analysis, a magnified reanalysis around the leading edge, and a transitional profile boundary layer and wake mixing analysis. A finite area technique and a body-fitted mesh are used for the reanalysis. The boundary layer analysis is performed using the dissipation-integral method of Walz which has been modified in the present application. Several turbine airfoil profile geometry designs are presented. Also two sample cascade design cases and their calculated performance for a range of Mach numbers and incidence angles are given and discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.