Abstract

The greater thoracic vessels are central to a well-functioning circulatory system and are often targeted in congenital heart surgeries, yet the structure and function of these vessels have not been well studied. Here we use consistent methods to quantify and compare microstructural features and biaxial biomechanical properties of the following six greater thoracic vessels in wild-type mice: ascending thoracic aorta, descending thoracic aorta, right subclavian artery, right pulmonary artery, thoracic inferior vena cava, and superior vena cava. Specifically, we determine volume fractions and orientations of the structurally significant wall constituents (i.e., collagen, elastin, and cell nuclei) using multiphoton imaging, and we quantify vasoactive responses and mechanobiologically relevant mechanical quantities (e.g., stress, stiffness) using computer-controlled biaxial mechanical testing. Similarities and differences across systemic, pulmonary, and venous circulations highlight underlying design principles of the vascular system. Results from this study represent another step towards understanding growth and remodeling of greater thoracic vessels in health, disease, and surgical interventions by providing baseline information essential for developing and validating predictive computational models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.