Abstract

Automated phenotype identification plays a critical role in cohort selection and bioinformatics data mining. Natural Language Processing (NLP)-informed classification techniques can robustly identify phenotypes in unstructured medical notes. In this paper, we systematically assess the effect of naive, lexically normalized, and semantic feature spaces on classifier performance for obesity, atherosclerotic cardiovascular disease (CAD), hyperlipidemia, hypertension, and diabetes. We train support vector machines (SVMs) using individual feature spaces as well as combinations of these feature spaces on two small training corpora (730 and 790 documents) and a combined (1520 documents) training corpus. We assess the importance of feature spaces and training data size on SVM model performance. We show that inclusion of semantically-informed features does not statistically improve performance for these models. The addition of training data has weak effects of mixed statistical significance across disease classes suggesting larger corpora are not necessary to achieve relatively high performance with these models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.