Abstract

High productivity is critical in harnessing the power of high-performance computing systems to solve science and engineering problems. It is a challenge to bridge the gap between the hardware complexity and the software limitations. Despite significant progress in programming language, compiler, and performance tools, tuning an application remains largely a manual task, and is done mostly by experts. In this paper, we propose a systematic approach toward automated performance analysis and tuning that we expect to improve the productivity of performance debugging significantly. Our approach seeks to build a framework that facilitates the combination of expert knowledge, compiler techniques, and performance research for performance diagnosis and solution discovery. With our framework, once a diagnosis and tuning strategy has been developed, it can be stored in an open and extensible database and thus be reused in the future. We demonstrate the effectiveness of our approach through the automated performance analysis and tuning of two scientific applications. We show that the tuning process is highly automated, and the performance improvement is significant.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.