Abstract

Bipartite graphs are common in many complex systems as they describe a relationship between two different kinds of actors, e.g., genes and proteins, metabolites and enzymes, authors and articles, or products and consumers. A common approach to analyze them is to build a graph between the nodes on one side depending on their relationships with nodes on the other side; this so-called one-mode projection is a crucial step for all further analysis but a systematic approach to it was lacking so far. Here, we present a systematic approach that evaluates the significance of the co-occurrence for each pair of nodes v, w, i.e., the number of common neighbors of v and w. It turns out that this can be seen as a special case of evaluating the interestingness of an association rule in data mining. Based on this connection we show that classic interestingness measures in data mining cannot be applied to evaluate most real-world product-consumer relationship data. We thus introduce generalized interestingness measures for both, one-mode projections of bipartite graphs and data mining and show their robustness and stability by example. We also provide theoretical results that show that the old method cannot even be used as an approximative method. In a last step we show that the new interestingness measures show stable and significant results that result in attractive one-mode projections of bipartite graphs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.