Abstract

Automatically generated orientation-location parts, or coordinate triplets describing the geometric elements, differ frequently from the corresponding parts of the symmetry-operation symbols listed in International Tables for Crystallography [(1983), Vol. A, Space-Group Symmetry, edited by Th. Hahn. Dordrecht: Reidel]. An effective algorithm enabling the derivation of standard orientation-location parts from any symmetry matrix is described and illustrated. The algorithm is based on a new concept alternative to the 'invariant points of reduced operation'. First, the geometric element that corresponds to a given symmetry operation is oriented and located in a nearly convention free manner. The application of the direction indices [uvw] or Miller indices (hkl) gives a unique orientation provided the convention about the positive direction is defined. The location is fixed by the specification of a unique point on the geometric element, i.e. the point closest to the origin. Next, both results are converted into the standard orientation-location form. The standardization step can be incorporated into other existing methods of derivation of the symmetry-operation symbols. A number of standardization examples are given.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.