Abstract

In order to determine water losses in irrigation canals, a systematic approach was developed, consisting of two main components: a seepage simulation model and a hydraulic simulation model. The SEEP/W module of the Geo-Studio software was used to simulate the seepage rate, and the Hydrologic Engineering Center-River Analysis System (HEC-RAS) hydrodynamic model was used for hydraulic simulation. Different operation scenarios were designed to investigate all possible situations in daily operation of water distribution and delivery systems. The seepage simulation results show that the seepage losses were higher at the bottom and corners of the canal, because the hydraulic gradient was affected by the hydraulic load. The hydraulic simulation results show that due to physical and management infrastructure (using non-automated and operator-based regulation structures), operational losses accounted for a significant volume of losses compared to seepage losses. In most operation scenarios, the maximum seepage loss was 10%, and the remaining 90% was related to operational losses. It is concluded that any factor (decrease or increase of inflow to the canal) that causes an increase or decrease of operational losses is ultimately a determining factor in reducing or increasing total losses. Therefore, management approaches should be adopted to improve performance of the system and reduce losses, especially operational losses, by improving the operation methods of water level regulation and off-take structures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call