Abstract

We present a systematic analysis of perturbative Hexagonal (HG) mixing for describing recent global fit neutrino mixing data with normal and inverted hierarchy. The corrections to unperturbed mixing are parametrized in terms of small orthogonal rotations [Formula: see text] with modified PMNS matrix of the forms [Formula: see text]. Here, [Formula: see text] is rotation in [Formula: see text] sector and [Formula: see text] is unperturbed Hexagonal mixing matrix. The detailed numerical investigation of all possible cases is performed with scanning of parameter space using [Formula: see text] approach. We found that the perturbative schemes governed by single rotation are unable to fit the mixing angle data even at [Formula: see text] level. The mixing schemes which involve two rotation matrices only [Formula: see text] are successful in fitting all neutrino mixing angles within [Formula: see text] range for normal hierarchy (NH). However for inverted hierarchy (IH), only [Formula: see text] is most preferable as it can fit all mixing angles at [Formula: see text] level. The remaining perturbative cases are either excluded at [Formula: see text] level or successful in producing mixing angles only at [Formula: see text] level. To study the impact of phase parameter, we also looked into CP violating effects for single rotation case. The predicted value of [Formula: see text] lies in the range [Formula: see text] for [Formula: see text] and [Formula: see text] case with normal (inverted) hierarchy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call