Abstract

Cyber security is the major concern in today’s world. Over the past couple of decades, the internet has grown to such an extent that almost every individual living on this planet has the access to the internet today. This can be viewed as one of the major achievements in the human race, but on the flip side of the coin, this gave rise to a lot of security issues for every individual or the company that is accessing the web through the internet. Hackers have become active and are always monitoring the networks to grab every possible opportunity to attack a system and make the best fortune out of its vulnerabilities. To safeguard people’s and organization’s privacy in this cyberspace, different network intrusion detection systems have been developed to detect the hacker’s presence in the networks. These systems fall under signature based and anomaly based intrusion detection systems. This paper deals with using anomaly based intrusion detection technique to develop an automation system to both train and test supervised machine learning models, which is developed to classify real time network traffic as to whether it is malicious or not. Currently the best models by considering both detection success rate and the false positives rate are Artificial Neural Networks(ANN) followed by Support Vector Machines(SVM). In this paper, it is verified that Artificial Neural Network (ANN) based machine learning with wrapper feature selection outperforms support vector machine (SVM) technique while classifying network traffic as harmful or harmless. Initially to evaluate the performance of the system, NSL-KDD dataset is used to train and test the SVM and ANN models and finally classify real time network traffic using these models. This system can be used to carry out model building automatically on the new datasets and also for classifying the behaviour of the provided dataset without having to code.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.