Abstract

This paper presents a fully integrated system-on-chip wireless transmitter that has no need for an external quartz crystal frequency reference. Instead, a nontrimmable $LC$ oscillator (LCO) is implemented, operating at a fixed frequency of roughly 3.2 GHz. This LCO serves as the accurate frequency reference of the transmitter and is used to derive a frequency in the sub-GHz range for wireless applications via a fractional phase-locked loop. The digital functionality required for the frequency generation and thus for the wireless operation is performed by an 8-b microcontroller. The calibration data as well as the application specific firmware are stored in an integrated EEPROM. An initial frequency accuracy of ±52 ppm over a temperature of −20 °C to 85 °C is achieved using only two temperature insertions for the calibration. The device covers a continuous frequency range of 10–960 MHz and provides an ASK and GFSK operation. A low harmonic power amplifier was implemented to overcome design issues due to injection modulation effects. The chip is implemented in a 130 nm standard CMOS process and constitutes a new approach for a fully integrated wireless sub-GHz transmitter that is competitive to state-of-the-art quartz crystal-based transmitters as well as to already existing crystal-less architectures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.