Abstract

Let H be the real quaternion algebra and H n × m denote the set of all n × m matrices over H . Let P ∈ H n × n and Q ∈ H m × m be involutions, i.e., P 2 = I , Q 2 = I . A matrix A ∈ H n × m is said to be ( P , Q ) -symmetric if A = PAQ . This paper studies the system of linear real quaternion matrix equations A 1 X 1 = C 1 X 1 B 1 = C 2 A 2 X 2 = C 3 X 2 B 2 = C 4 A 3 X 1 B 3 + A 4 X 2 B 4 = C c . We present some necessary and sufficient conditions for the existence of a solution to this system and give an expression of the general solution to the system when the solvability conditions are satisfied. As applications, we discuss the necessary and sufficient conditions for the system A a X = C a , XB b = C b , A c XB c = C c to have a ( P , Q ) -symmetric solution. We also show an expression of the ( P , Q ) -symmetric solution to the system when the solvability conditions are met. Moreover, we provide an algorithm and a numerical example to illustrate our results. The findings of this paper extend some known results in the literature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.