Abstract
We consider a financial model where the prices of risky assets are quoted by a representative market maker who takes into account an exogenous demand. We characterize these prices in terms of a system of BSDEs with quadratic growth. We show that this system admits a unique solution for every bounded demand if and only if the market maker's risk-aversion is sufficiently small. The uniqueness is established in the natural class of solutions, without any additional norm restrictions. To the best of our knowledge, this is the first study that proves such (global) uniqueness result for a system of fully coupled quadratic BSDEs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.