Abstract

This paper examines a system of reaction–diffusion equations arising from a flowing water habitat. In this habitat, one or two microorganisms grow while consuming two growth-limiting, complementary (essential) resources. For the single population model, the existence and uniqueness of a positive steady-state solution is proved. Furthermore, the unique positive solution is globally attracting for the system with regard to nontrivial nonnegative initial values. Mathematical analysis for the two competing populations is carried out. More precisely, the long-time behavior is determined by using the monotone dynamical system theory when the semi-trivial solutions are both unstable. It is also shown that coexistence solutions exist by using the fixed point index theory when the semi-trivial solutions are both (asymptotically) stable.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.