Abstract

In this paper, we consider a class of accretive mappings called generalized H(·, ·)-accretive mappings in Banach spaces. We prove that the proximal-point mapping of the generalized H(·, ·)-accretive mapping is single-valued and Lipschitz continuous. Further, we consider a system of generalized variational inclusions involving generalized H(·, ·)-accretive mappings in real q-uniformly smooth Banach spaces. Using proximal-point mapping method, we prove the existence and uniqueness of solution and suggest an iterative algorithm for the system of generalized variational inclusions. Furthermore, we discuss the convergence criteria of the iterative algorithm under some suitable conditions. Our results can be viewed as a refinement and improvement of some known results in the literature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.