Abstract

This study aimed to create and validate an integrated data acquisition system for gauging the force distribution between a laryngoscope and soft-tissue during trans-oral surgery. Sixteen piezoresistive force sensors were interfaced to a laryngoscope and custom maxillary tooth guard. A protocol for calibrating the laryngoscope and maxilla sensors was developed using a motor-controlled linear stage and force measurements were validated against a digital scale. The system was initially tested during suspension laryngoscopy on three cadaver heads mounted on a cadaver head-holder. Intraoperative data was also collected from three patients undergoing head and neck tumor resection. Mean calibration error of the scope sensors was less than 150 g (n = 3) and mean maxilla sensor error was less than 200 g (n = 3). Peak scope mag-forces of 8.09 ± 6.61 kg and peak maxilla forces of 7.62 ± 4.57 kg were experienced during the cadaver trials. The peak scope sensor mag-force recorded during the intraoperative cases was 24.7 ± 4.53 kg, and the peak maxilla force was 22.0 ± 4.60 kg. The data acquisition system was successfully able to record intraoperative force distribution data. The usefulness of this technology in informing surgeons during trans-oral surgery should be further evaluated in patients with varying anatomic and procedural characteristics. Creation of a low-cost, integrated force-sensing system allows for the characterization of retraction forces at anatomic sites including the pharynx and larynx, brain, and abdomen. Real-time force detection provides surgeons with valuable intraoperative feedback and can be used to improve deformation models at various anatomic sites.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call