Abstract

This paper describes the approach employed to implement the autonomous landing of an Unmanned Aerial Vehicle (UAV) upon a moving ground vehicle. We consider an application scenario in which a target, made of a visual pattern, is mounted on the top of a ground vehicle which roams in an arena using a certain path and velocity; the UAV is asked to find the ground vehicle, by detecting the visual pattern, and then to track it in order to perform the approach and finalize the landing. To this aim, Computer Vision is adopted to perform both detection and tracking of the visual target; the algorithm used is based on the TLD (Tracking-Learning-Detection) approach, suitably integrated with an Hough Transform able to improve the precision of the identification of the 3D coordinates of the pattern. The output of the Computer Vision algorithm is then exploited by a Kalman filter which performs the estimation of the trajectory of the ground vehicle in order to let the UAV track, follow and approach it. The paper describes the software and hardware architecture of the overall application running on the UAV. The application described has been practically used with success in the context of the “Mohamed Bin Zayed” International Robotic Challenge (MBZIRC) which took place in March 2017 in Abu Dhabi.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.