Abstract

Ampoule injection is a routinely used treatment in hospitals due to its rapid effect after intravenous injection. During manufacturing, tiny foreign particles can be present in the ampoule injection. Therefore, strict inspection must be performed before ampoule injections can be sold for hospital use. In the quality control inspection process, most ampoule enterprises still rely on manual inspection which suffers from inherent inconsistency and unreliability. This paper reports an automated system for inspecting foreign particles within ampoule injections. A custom-designed hardware platform is applied for ampoule transportation, particle agitation, and image capturing and analysis. Constructed trajectories of moving objects within liquid are proposed for use to differentiate foreign particles from air bubbles and random noise. To accurately classify foreign particles, multiple features including particle area, mean gray value, geometric invariant moments, and wavelet packet energy spectrum are used in supervised learning to generate feature vectors. The results show that the proposed algorithm is effective in classifying foreign particles and reducing false positive rates. The automated inspection system inspects over 150 ampoule injections per minute (versus ~ 12 ampoule injections per minute by technologist) with higher accuracy and repeatability. In addition, the automated system is capable of diagnosing impurity types while existing inspection systems are not able to classify detected particles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.