Abstract

Event detection in crowded surveillance videos is a challenging yet important problem. In this paper, we present our eSur (Event detection system on SURveillance video) system, which is derived from TRECVid'12 surveillance tasks. Currently, eSur attempts to detect two categories of events: 1) pair-wise events (e.g., PeopleMeet, PeopleSplitUp and Embrace); 2) action-like events (e.g., ObjectPut, CellToEar, PersonRuns and Pointing). In eSur system, we first employ people detection and tracking algorithms to locate target persons in 3D space-time domain. Then the video sequences in which target persons occur are partitioned into several spatio-temporal cubes. Visual features (i.e. cubic feature and MoSIFT) are computed over these cubes. After that, a sequence learning method, (namely SVM with dynamic time alignment kernel), is employed to infer the existence of an event for the video sequence. According to the TRECVid SED formal evaluation, eSur has yielded fairly encouraging results on TRECVid'12 dataset.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.