Abstract

(1) Background: The imbalance of the autonomic nervous system (ANS) is common worldwide. Many people have high tension when the sympathetic nervous system is hyperactive or low attention when the parasympathetic nervous system is hyperactive. To improve autonomic imbalance, a feasible and integrated system was proposed to measure and affect the ANS status. (2) Methods: The proposed system consists of a signal-processing module, an LED stimulation module, a photoplethysmography (PPG) sensor and an LCD display. The heart rate variability (HRV) and ANS status can be analyzed from PPG data. To confirm HRV analysis from PPG data, an electrocardiogram (ECG) device was also used to measure HRV. Additionally, photobiomodulation (PBM) was used to affect the ANS status, and two acupuncture points (Neiguan (PC6) and Shenmen (HT7)) were stimulated with different frequencies (10 Hz and 40 Hz) of PBM. (3) Results: Two subjects were tested with the developed system. HRV metrics were discussed in the time domain and frequency domain. HRV metrics have a similar change trend on PPG and ECG signals. In addition, the SDNN was increased, and the parasympathetic nervous system (PNS: HF (%)) was enhanced with a 10 Hz pulse rate stimulation at the Neiguan acupoint (PC6). Furthermore, the SDNN was increased, and the sympathetic nervous system (SNS: LF (%)) was enhanced with a 40 Hz pulse rate stimulation at the Shenmen (HT7) acupoint. (4) Conclusion: A prototype to measure and affect the ANS was proposed, and the functions were feasible. The test results show that stimulating the Neiguan (PC6) acupoint can inhibit the SNS. In contrast, stimulating the Shenmen (HT7) acupoint can activate the SNS. However, more experiments must be conducted to confirm the effect by choosing different pulse rates, dosages and acupoints.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.