Abstract

Data scarcity is a significant obstacle for modern data science and artificial intelligence research communities. The fact that abundant data are a key element of a powerful prediction model is well known through various past studies. However, industrial control systems (ICS) are operated in a closed environment due to security and privacy issues, so collected data are generally not disclosed. In this environment, synthetic data generation can be a good alternative. However, ICS datasets have time-series characteristics and include features with short- and long-term temporal dependencies. In this paper, we propose the attention-based variational recurrent autoencoder (AVRAE) for generating time-series ICS data. We first extend the evidence lower bound of the variational inference to time-series data. Then, a recurrent neural-network-based autoencoder is designed to take this as the objective. AVRAE employs the attention mechanism to effectively learn the long-term and short-term temporal dependencies ICS data implies. Finally, we present an algorithm for generating synthetic ICS time-series data using learned AVRAE. In a comprehensive evaluation using the ICS dataset HAI and various performance indicators, AVRAE successfully generated visually and statistically plausible synthetic ICS data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.