Abstract

Activation of class I Phosphoinositide 3-kinases (PI3Ks) by mutation or overexpression closely correlates with the development of various human cancers. Class I PI3Ks are heterodimers composed of p110 catalytic subunits and regulatory subunits represented by p85. PAQR3 has been found to inhibit p110α activity by blocking its interaction with p85. In this study, we identified the N-terminal 6–55 amino acid residues of PAQR3 being sufficient for its interaction with p110α. A synthetic peptide, P6-55, that contains the N-terminus of PAQR3 could disrupt the interactions of p110α with both PAQR3 and p85. The activity of PI3K was also inhibited by P6-55, accompanied by significant inhibition of cancer cell proliferation. In a xenograft mouse model, P6-55 was able to reduce tumor growth in vivo. Furthermore, P6-55 was capable of inhibiting the elevated basal PI3K activity of H1047R, a hotspot mutation found in many types of human cancers. The cell proliferation and migration of cancer cells bearing H1047R mutation were also reduced by P6-55. In conclusion, our study provides a proof of concept that blocking the interaction of p110α with p85 by a peptide can serve as a new strategy to inhibit the oncogenic activity of PI3K in cancer therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.