Abstract

The development of high-speed railway networks and the increased running speeds of high-speed trains (HSTs) have made the aerodynamic interference between HSTs and their surrounding environments increasingly important. Compared with a traditional wind tunnel test, systematically understanding the aerodynamic characteristics of HSTs involves relatively more stringent requirements, highlighting the need to develop experimental methods and technologies with enhanced dynamic performance. Central South University (CSU) developed a wireless data acquisition system, named as the in-model sensory and wireless data acquisition — remote control and processing system (ISWDA-RCPS), which can operate onboard a novel moving train and infrastructure rig. The system was developed to meet current wind tunnel data collection needs, and it avoids the physical cables used in conventional devices, which are extremely susceptible to induced noise. The system accepts inputs from various sensors and transfers the data wirelessly to an access point outside a wind tunnel’s test section. To analyze the feasibility of the ISWDA-RCPS concerning its sensing capabilities and wireless communications, we conduct experiments in multiple operating conditions. Finally, pressure measurements are acquired from a moving Fuxing HST model at different points and used to analyze the aerodynamic behavior of the model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call