Abstract

Although diamond has been studied for dosimetry principally due to its near-tissue equivalence, its use in both low-energy X-rays and high-energy electron beams has not been reported. This report is based on dosimetric studies of a synthetic diamond probe when subjected to diagnostic mammography X-ray photons and megavoltage electron therapy beams. The probe, constructed using entirely tissue-equivalent Perspex body, was configured for radiation dose measurement in either ‘edge-on’ or ‘flat-on’ exposure geometry without having first to re-orient the diamond within the body of the detector, and it was designed to be compatible with commercial electrometer systems. The radiation response of the diamond tested showed negligible energy dependence; its minimal background signal, high sensitivity (547.52 nC Gy −1 mm −3) and suitability for measurements in small radiation fields of steep dose gradients due to its small size make it suitable for clinical dosimetry. The presented probe has the potential advantage of replacing conventional radiation dosimeters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.