Abstract
The HIV-1 envelope, gp120, which features the binding determinants for both CD4 and coreceptor recognition, is key for virus entry and represents an attractive pharmacological target. However, critical domains for entry (coreceptor and CD4 binding sites) are either cryptic or located in partially occluded cavities. Here we developed a chemical approach to synthesize a CD4-mimetic peptide linked to a heparan sulfate dodecasaccharide. This molecule binds to gp120, induces the exposure of the coreceptor binding domain and renders it available for interaction with the oligosaccharide. The linkage between the CD4 mimetic and the heparan sulfate derivative provides strong cooperative effects, resulting in low-nanomolar antiviral activity toward both CCR5- and CXCR4-tropic HIV-1 strains. This compound, which has the unique ability to simultaneously target two critical and highly conserved regions of gp120, establishes a new type of inhibitor and suggests a general concept for the inhibition of numerous other biological systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.