Abstract

In this paper, we consider the problem of realizing associative memories via space-varying CNNs (cellular neural networks). Based on some known results and a newly derived theorem for the CNN model, we propose a synthesis procedure for obtaining a space-varying CNN that can store given bipolar vectors with certain desirable properties. The major part of our synthesis procedure consists of solving generalized eigenvalue problems and/or linear matrix inequality problems, which can be efficiently solved by recently developed interior point methods. The validity of the proposed approach is illustrated by a design example.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.