Abstract

Metal foam heat exchangers have considerable advantages in thermal management and heat recovery over several commercially available heat exchangers. In this work, the effects of micro structural metal foam properties, such as porosity, pore and fiber diameters, tortuosity, pore density, and relative density, on the heat exchanger performance are discussed. The pertinent correlations in the literature for flow and thermal transport in metal foam heat exchangers are categorized and investigated. Three main categories are synthesized. In the first category, the correlations for pressure drop and heat transfer coefficient based on the microstructural properties of the metal foam are given. In the second category, the correlations are specialized for metal foam tube heat exchangers. In the third category, correlations are specialized for metal foam channel heat exchangers. To investigate the performance of the foam filled heat exchangers in comparison with the plain ones, the required pumping power to overcome the pressure drop and heat transfer rate of foam filled and plain heat exchangers are studied and compared. A performance factor is introduced which includes the effects of both heat transfer rate and pressure drop after inclusion of the metal foam. The results indicate that the performance will be improved substantially when a metal foam is inserted in the tube/channel.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call