Abstract

In evolutionary ecology, coevolution is typically defined as reciprocal evolution of interacting species. However, outside the context of interacting species, the term "coevolution" is also used at levels of biological organization within species (e.g., between males and females, between cells, and between genes or proteins). Furthermore, although evolution is typically defined as "genetic change over time", coevolution need not involve genetic changes in the interacting parties, since cultures can also evolve. In this review, I propose that coevolution be defined more broadly as "reciprocal adaptive evolution at any level of biological organisation". The classification of reciprocal evolution at all levels of biological organization as coevolution would maintain consistency in terminology. More importantly, the broader definition should facilitate greater integration of coevolution research across disciplines. For example, principles usually discussed only in the context of coevolution between species or coevolution between genes (e.g., tight and diffuse coevolution, and compensatory coevolution, respectively) could be more readily applied to new fields. The application of coevolutionary principles to new contexts could also provide benefits to society, for instance in deducing the dynamics of coevolution between cancer cells and cells of the human immune system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call