Abstract
The automatic detection of negation is a crucial task in a wide-range of natural language processing (NLP) applications, including medical data mining, relation extraction, question answering, and sentiment analysis. In this paper, we present a syntactic path-based hybrid neural network architecture, a novel approach to identify the scope of negation in a sentence. Our hybrid architecture has the particularity to capture salient information to determine whether a token is in the scope or not, without relying on any human intervention. This approach combines a bidirectional long short-term memory (Bi-LSTM) network and a convolutional neural network (CNN). The CNN model captures relevant syntactic features between the token and the cue within the shortest syntactic path in both constituency and dependency parse trees. The Bi-LSTM learns the context representation along the sentence in both forward and backward directions. We evaluate our model on the Bioscope corpus, and get 90.82% F-score (78.31% PCS) on the abstract sub-corpus, outperforming features-dependent approaches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.