Abstract

Ten years of surface and upper-air analyses from the ECMWF Tropical Ocean Global Atmosphere (TOGA) dataset were used to construct a synoptic climatology of kona storms in the subtropical central and eastern Pacific Ocean. Within a sample of 115 cyclones that predominantly occurred during the Northern Hemisphere cool season, three distinct types of kona storms were identified: cold-frontal cyclogenesis (CFC) cyclones, coldfrontal cyclogenesis/trade wind easterlies (CT) cyclones, and trade wind easterlies (TWE) cyclones. Of the three types, CFC cyclones were found to be the most common type of kona storm, while CT and TWE cyclones occur much less frequently. The geographical distribution, propagation characteristics, and the monthly and interannual variability in the number of kona storms are presented. Kona storms initially develop across a large portion of the subtropical Pacific, with the greatest concentration of kona storms found within a southwest-to-northeast-oriented band from west of Hawaii to 408N, 1408W. A distinct latitudinal stratification was evident for each type of kona storm, with CFC, CT, and TWE cyclones each more likely to initially develop at successively lower latitudes. The analysis reveals that kona storms can propagate in any direction but exhibit a clear preference to propagate toward the northeast. Use of the multivariate ENSO index indicates that the number of kona storms that develop during each cool season is not correlated to the phase of ENSO. An analysis of the composite structure and evolution of each type of kona storm revealed some common and some unique characteristics. Development of the surface cyclone in all types results from the intrusion of an upper-level disturbance of extratropical origin into the subtropics, although differences in the initial structure and subsequent evolution of the 300-hPa trough were noted for each type of kona storm. The analysis also revealed that relatively weak 300-hPa winds are present throughout the evolution of each type of kona storm and that the composite kona storm tends to be nestled along the southern boundary of a region of higher surface pressure during the mature stage of its evolution. The development of robust ridges in the 300-hPa geopotential and 1000‐500-hPa thickness fields downstream of the composite surface cyclone were noteworthy features that characterized the evolution of all kona storms, the latter feature strongly suggesting that these disturbances are fundamentally baroclinic in nature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call