Abstract
Na3V2(PO4)3(NVP), as a representative sodium superionic conductor with a stable polyanion framework, is considered a cathode candidate for aqueous zinc-ion batteries attributed to their high discharge platform and open 3D structure. Nevertheless, the structural stability of NVP and the cathode-electrolyte interphase (CEI) layer formed on NVP can be deteriorated by the aqueous electrolyte to a certain extent, which will result in slow Zn2+ migration. To solve these problems, doping Si elements to NVP and adding sodium acetate (NaAc) to the electrolyte are utilized as a synergistic regulation route to enable a highly stable CEI with rapid Zn2+ migration. In this regard, Ac- competitively takes part in the solvation structure of Zn2+ in aqueous electrolyte, weakening the interaction between water and Zn2+, and meanwhile a highly stable CEI is formed to avoid structural damage and enable rapid Zn2+ migration. The NVPS/C@rGO electrode exhibits a notable capacity of 115.5mAhg-1 at a current density of 50mAg-1 in the mixed electrolyte (3M ZnOTF2+3M NaAc). Eventually, a collapsible "sandwich" soft pack battery is designed and fabricated and can be used to power small fans and LEDs, which proves the practical application of aqueous zinc-ion batteries in flexible batteries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.